Abstract

This paper describes the behavior of a commercial light detection and ranging (LiDAR) sensor in the presence of dust. This work is motivated by the need to develop perception systems that must operate where dust is present. This paper shows that the behavior of measurements from the sensor is systematic and predictable. LiDAR sensors exhibit four behaviors that are articulated and understood from the perspective of the shape‐of‐return signals from emitted light pulses. We subject the commercial sensor to a series of tests that measure the return pulses and show that they are consistent with theoretical predictions of behavior. Several important conclusions emerge: (i) where LiDAR measures dust, it does so to the leading edge of a dust cloud rather than as a random noise; (ii) dust starts to affect measurements when the atmospheric transmittance is less than 71%–74%, but this is quite variable with conditions; (iii) LiDAR is capable of ranging to a target in dust clouds with transmittance as low as 2% if the target is retroreflective and 6% if it is of low reflectivity; (iv) the effects of airborne particulates such as dust are less evident in the far field. The significance of this paper lies in providing insight into how better to use measurements from off‐the‐shelf LiDAR sensors in solving perception problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.