Abstract

Contrary to the common-sense view and positivist aspirations, scientific concepts are often imprecise. Many of these concepts are ambiguous, vague, or have an under-specified meaning (Gillon 1990). In this paper, I discuss how imprecise concepts promote integration in biology and thus benefit science. Previous discussions of this issue focus on the concepts of molecular gene and evolutionary novelty (Brigandt in Synthese 177:19–40, 2010; Fox Keller in The century of the gene, Harvard University Press, Cambridge, 2000; Love in Philos Sci 75:874–886, 2008; Waters in Philos Sci 61:163–185, 1994). The concept of molecular gene helps biologists integrate explanatory practices, while the notion of evolutionary novelty helps them integrate research questions into an interdisciplinary problem (Brigandt and Love in J Exp Zool Part B Mol Dev Evol 318:417–427, 2012; Waters, in: Galavotti, Dieks, Gonzalez, Hartmann, Uebel, Weber (eds) New directions in the philosophy of science, Springer, Dordrecht, 2014). In what follows, I compare molecular gene and evolutionary novelty to another imprecise concept, namely biological lineage. This concept promotes two other types of scientific integration: it helps biologists integrate theoretical principles and methodologies into different areas of biology. The concept of biological lineage facilitates these types of integration because it is broad and under-specified in ways that the concepts of molecular gene and evolutionary novelty are not. Hence, I use the concept of biological lineage as a case study to reveal types of integration that have been overlooked by philosophers. This case study also shows that even very imprecise concepts can be beneficial to scientific practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call