Abstract

Geometric phases, accumulated when a quantum system traces a cycle in quantum state space, do not depend on the parametrization of the cyclic path, but do depend on the path itself. In the presence of noise that deforms the path, the phase gets affected, compromising the robustness of possible applications, e.g. in quantum computing. We show that for a special class of spin states, called anticoherent, and for paths that correspond to a sequence of rotations in physical space, the phase only depends on topological characteristics of the path, in particular, its homotopy class, and is therefore immune to noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.