Abstract
Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression for the derivatives (of various orders) of the geometric phase in terms of the covariant derivatives of the curve. As an application of our results, we put forward the brachistophase problem: given a quantum state, find the (appropriately normalized) Hamiltonian that maximizes the accumulated geometric phase after time τ—we find an analytical solution for all spin values, valid for small τ. For example, the optimal evolution of a spin coherent state consists of a single Majorana star separating from the rest and tracing out a circle on the Majorana sphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.