Abstract

The analysis of high-frequency financial data is often impeded by the presence of noise. This article is motivated by intraday return data in which market microstructure noise appears to be rough, that is, best captured by a continuous-time stochastic process that locally behaves as fractional Brownian motion. Assuming that the underlying efficient price process follows a continuous Itô semimartingale, we derive consistent estimators and asymptotic confidence intervals for the roughness parameter of the noise and the integrated price and noise volatilities, in all cases where these quantities are identifiable. In addition to desirable features such as serial dependence of increments, compatibility between different sampling frequencies and diurnal effects, the rough noise model can further explain divergence rates in volatility signature plots that vary considerably over time and between assets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.