Abstract
The breakup and coalescence of drops are elementary topological transitions in interfacial flows. The breakup of a drop changes dramatically when polymers are added to the fluid. With the strong elongation of the polymers during the process, long threads connecting the two droplets appear prior to their eventual pinch-off. Here, we demonstrate how elasticity affects drop coalescence, the complement of the much studied drop pinch-off. We reveal the emergence of an elastic singularity, characterized by a diverging interface curvature at the point of coalescence. Intriguingly, while the polymers dictate the spatial features of coalescence, they hardly affect the temporal evolution of the bridge. These results are explained using a novel viscoelastic similarity analysis and are relevant for drops created in biofluids, coating sprays, and inkjet printing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.