Abstract
Coalescence and breakup of drops are classic problems in fluid physics that often involve self-similarity and singularity formation. While the coalescence of suspended drops is axisymmetric, the coalescence of drops on a substrate is inherently three-dimensional. Yet, studies so far have only considered this problem in two dimensions. In this Letter, we use interferometry to reveal the three-dimensional shape of the interface as two drops coalescence on a substrate. We unify the known scaling laws in this problem within the thin-film approximation and find a three-dimensional self-similarity that enables us to describe the anisotropic shape of the dynamic interface with a universal curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.