Abstract

This paper studies defender patrol deception in general Stackelberg security games (SSGs), where a defender attempts to alter the attacker's perception of the defender's patrolling intensity so as to influence the attacker's decision making. We are interested in understanding the complexity and effectiveness of optimal defender deception under different attacker behavior models. Specifically, we consider three different attacker strategies of response (to the defender's deception) with increasing sophistication, and design efficient polynomial-time algorithms to compute the equilibrium for each. Moreover, we prove formal separation for the effectiveness of patrol deception when facing an attacker of increasing sophistication, until it becomes even harmful to the defender when facing the most intelligent attacker we consider. Our results shed light on when and how deception should be used in SSGs. We conduct extensive experiments to illustrate our theoretical results in various game settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.