Abstract

Laboratory wheat beers were brewed with different wheat varieties of different protein content (8.7–14.4%) and with five different barley malts, varying in degree of modification (soluble protein: 3.9–6.9%). In a first series of experiments, it was investigated whether wheat positively influences the foam stability, a major characteristic of wheat beers. NIBEM and Rudin (CO2) foam analyses revealed that the effect of wheat on foam stability depended on the barley malt used for brewing. When using malt with high foaming potential, wheat exerts a negative influence. However, wheat added to over-modified malt with less foam promoting factors, ameliorates beer foaming characteristics proving that wheat contains foam active compounds. In addition, Rudin (N2) values suggested that wheat positively influences foam stability by decreasing liquid drainage, probably caused by a higher beer viscosity and/or a finer foam bubble size distribution. Furthermore, the haze in wheat beers, which is another important quality characteristic of these beers, was investigated. Permanent haze readings of the 40% wheat beers were lower than 1.5 EBC haze units. For 20% wheat beers, an inverse relation between the permanent haze (9.4–19.3 EBC haze units) and the protein content of the wheat was established. The barley malt used for brewing also influenced permanent haze readings. A positive correlation between the modification degree of the malt and the permanent haze intensity was found. It was concluded that the choice of raw materials for wheat beer brewing considerably influences the visual properties of the beer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call