Abstract
In recent years, there have been worldwide reports of massive tsunamis, drawing attention to how tsunamis are intensified by submarine landslides triggered by earthquakes. However, precise data on tsunamis caused by submarine landslides are scarce, leading to insufficient information for a thorough discussion of the characteristics of such tsunamis. On the other hand, during the Noto Peninsula earthquake (Mw7.5) that occurred in Japan on January 1, 2024, a nonseismic tsunami distinct from those originating from fault ruptures were observed. To investigate its characteristics, we analyzed tide/wave gauge records, video footage, and tsunami trace heights along the coast of Toyama Bay. Furthermore, we validated scenarios capable of reproducing the observed records using an integrated landslide–tsunami model. It was found that assuming the existence of 5 submarine landslides along the underwater canyons of Toyama Bay enabled the precise explanation of multiple types of data. Additionally, our study revealed that submarine landslides occurred approximately 50 s after the earthquake, coinciding with the peak ground shaking in Toyama Bay. Compared to the seismic tsunami originating solely from the Noto Peninsula offshore fault rupture, the subsequent tsunami triggered by submarine landslides amplified the tsunami height by approximately 30% along Toyama Bay.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.