Abstract
Rapid movements to a target are ballistic; they usually do not last long enough for visual feedback about errors to influence them. Yet, the brain is not simply precomputing movement trajectory. Classical models of movement control involve a feedback loop that subtracts 'where we are now' from 'where we want to be'. That difference is an internal motor error. The feedback loop reduces this error until it reaches zero, stopping the movement. However, neurophysiological studies have shown that movements controlled by the cerebrum (e.g. arm and head movements) and those controlled by the brain stem (e.g. tongue and eye movements) are also controlled, in parallel, by the cerebellum. Thus, there may not be a single error control loop. We propose an alternative to feedback error control, wherein the cerebellum uses adaptive, velocity feedback, integral control to stop the movement on target.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.