Abstract

Porosity in bulky solvents can be created by the methods of dispersing and dissolving porous hosts or by their chemical adornment. And the ensuing liquids with cavities offer requisite high gas uptakes. Intriguingly, metal-organic cages (MOCs) as discrete nanoporous hosts have been utilized recently as soluble entities to obtain a series of interesting type II porous liquids (PLs). Yet, factors affecting the fabrication of type II PLs have not been disclosed. Herein, three metallocages (NUT-101, ZrT-1-NH2, and ZrT-1) with the same zirconocene nodes but different organic ligands are chosen as porous hosts and a polyethylene-glycol (PEG) linked bis-imidazolium based IL, IL(NTf2), is used as a bulky solvent. It is revealed for the first time that the generation of type II PL depends upon the flexibility of MOCs and the interaction between MOCs and solvent molecules. The maximum solubility is observed with NUT-101 (5%) in IL(NTf2) while ZrT-1-NH2 and ZrT-1 remain least soluble (0.5% and 0.2%). As a result, PL-NUT-101-5% with most intrinsic cavities shows higher CO2 uptake (0.576mmolg-1) than PL-ZrT-1-NH2-0.5% and PL-ZrT-1-0.2% as well as those reported type II PLs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.