Abstract
Decreasing cost of technologies for direct air capture of carbon can be achieved through the design of new materials with high CO2 selectivity that can be incorporated into existing industrial processes. An emerging class of materials for these applications are porous liquids (PLs). PLs are mixtures of porous hosts and solvents with intrinsic porosity due to steric exclusion of solvent from inside the porous host. It is currently unknown how solvent -porous host interactions affect porous host solubility in the bulk solvent. Here, density functional theory simulations were used to investigate interactions between nine solvents and a CC13 porous organic cage (POC). Calculations identified that solvent molecules were the most stable when placed either inside the CC13 POC or in the pore window compared to interfacial binding sites. Structural changes to the CC13 POC correlated with reported experimental solubilities, including expansion of the CC13 POC with solvent molecule infiltration and expansion or contraction of the pore window. Based on these results, new PL design guidelines should include compositions with (1) high concentrations of POCs with flexible cage structures that can expand when solvated and (2) solvent molecule-POC combinations that contract the pore window during solvent molecule-host binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.