Abstract

Two-dimensional (2D) metal dichalcogenides (MX2) are the most common type of 2D semiconductors and have shown great potential for a wide range of chemical and physical applications. However, they are limited by a low electron/hole mobility, which has been recognized as one of the major challenges impeding their further developments, and urges efforts to understand the mobility-limiting factors and discovery of higher-mobility alternatives. Here using density functional perturbation theory and Wannier interpolation of the electron-phonon matrix to study a wide range of MX2, we find that the intrinsic carrier mobility, in contrast to common belief, neither correlates with the effective mass nor can be assessed by the widely used deformation potential theory; instead it is limited by the longitudinal optical (LO) phonon scattering for most MX2, while for MoS2 and WS2, the mobility is limited by the longitudinal acoustic (LA) phonon scattering. Furthermore, we find that the LO scattering strength is strongly correlated with the magnitude of the Born effective charge, suggesting that the carrier transport is greatly affected by the electric polarization change induced by the atomic vibration. This finding enables us to use the Born effective charge to rapidly screen the 2D MX2 database for high-mobility semiconductor candidates. Our work reveals the underlying factors governing the intrinsic carrier mobility of 2D MX2, offers a practical descriptor for discovering high-mobility candidates, and serves as a paradigm to accurately assess the carrier mobility in 2D semiconductors, thereby paving critical steps toward the development of 2D materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call