Abstract

We consider an arbitrary square integrable function $F$ on the phase space and look for the Wigner function closest to it with respect to the $L^2$ norm. It is well known that the minimizing solution is the Wigner function of any eigenvector associated with the largest eigenvalue of the Hilbert-Schmidt operator with Weyl symbol $F$. We solve the particular case of radial functions on the two-dimensional phase space exactly. For more general cases, one has to solve an infinite dimensional eigenvalue problem. To avoid this difficulty, we consider a finite dimensional approximation and estimate the errors for the eigenvalues and eigenvectors. As an application, we address the so-called Wigner approximation suggested by some of us for the propagation of a pulse in a general dispersive medium. We prove that this approximation never leads to a {\it bona fide} Wigner function. This is our prime motivation for our optimization problem. As a by-product of our results we are able to estimate the eigenvalues and Schatten norms of certain Schatten-class operators. The techniques presented here may be potentially interesting for estimating eigenvalues of localization operators in time-frequency analysis and quantum mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.