Abstract

Copper waterborne toxicity is well understood in aquatic organisms. However, the dietary copper effects are much less known, especially in tropical fish. The toxicity of copper via the trophic route could be influenced by the composition of the food, and diets naturally impregnated with copper seem to have greater toxicity at lower concentrations than artificially impregnated ones. Thus, our objective was to investigate the effects of copper on juveniles of the Neotropical fish Hoplias malabaricus fed on live prey (Astyanax altiparanae) previously exposed to the metal (20 µg L − 1) for 96 h. The prey fish were given to H. malabaricus every 96 h, totaling 10 doses at the end of the experiment. Thus, after 40 days fish were killed and tissues were sampled. Blood showed to be the only tissue in which copper accumulated. Anemia was found and there was damage to the DNA of erythrocytes. Furthermore, ionic imbalances were observed in plasma. There was an increase in the concentration of Na+ and Cl− and a decrease in Ca2+, which were associated with increased copper uptake in the gastrointestinal tract of fish fed on copper exposed prey. All the antioxidant enzymes evaluated in the gills showed decreased activity compared to the control group. Copper seems to have interfered in the energy metabolism of H. malabaricus, since a lower condition factor and feed conversion efficiency rate were observed in fish fed with copper diet. The present study confirms the trophic route as an important copper toxicity pathway for H. malabaricus and reinforces the idea that metal toxicity can be increased when it is naturally impregnated in the prey tissues, even if the prey has been exposed to the metal only for a short period of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call