Abstract
We use a dynamic ecosystem model to evaluate the relative effects of fishing history, climate change, and predator–prey interactions in determining biomass trajectories for 12 species groups ranging from marine mammals through commercially exploited fish and invertebrates in the Gulf of Alaska (GOA). Ecosystem model fits under six alternative hypotheses relating fishing, climate, and predation were evaluated. Fishing alone explained few GOA biomass trajectories; it was necessary to both estimate specific predator–prey relationships and provide some mechanism for increased production. No single control hypothesis explained all species dynamics simultaneously, suggesting that in the GOA, there is no single main driver of the ecosystem. Furthermore, the alternative control hypotheses implied contrasting sets of predator–prey relationships (estimated functional response parameters). Therefore, a single set of “best fit” parameters for a given control hypothesis is unlikely to be useful in forecasting. Future modeling efforts supporting ecosystem-based fishery management could retain multiple working models to accommodate complex forcing (fishing, keystone species production, and environmental) differentially affecting components of the ecosystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Fisheries and Aquatic Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.