Abstract

Spinal cord stimulation (SCS) can have dramatic effects on painful, vascular, and motor symptoms of complex regional pain syndrome (CRPS), but its precise mechanism of action is unclear. Better understanding of the physiologic effects of SCS may improve understanding not only of this treatment modality but also of CRPS pathophysiology. Effects of SCS on pain perception are likely to occur through activation of inhibitory GABA-ergic and cholinergic spinal interneurons. Increased release of both neurotransmitters has been demonstrated following SCS in animal models of neuropathic pain, with accompanying reductions in pain behaviors. Effects of SCS on vascular symptoms of CRPS are thought to occur through two main mechanisms: antidromic activation of spinal afferent neurons and inhibition of sympathetic efferents. Cutaneous vasodilation following SCS in animal models has been shown to involve antidromic release of calcitonin gene-related peptide and possibly nitric oxide, from small-diameter sensory neurons expressing the transient receptor potential V1 (TRPV1) receptor. The involvement of sympathetic efferents in the effects of SCS has not been studied in animal models of neuropathic pain, but has been demonstrated in models of angina pectoris. In conclusion, SCS is of clinical benefit in CRPS, and although its mechanism of action merits further elucidation, what little we do know is informative and can partially explain some of the pathophysiology of CRPS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call