Abstract
We mine from the literature experimental data on the CO2 electrochemical reduction selectivity of Cu single crystal surfaces. We then probe the accuracy of a machine learning model trained to predict faradaic efficiencies for 11 CO2 reduction reaction products, as a function of the applied voltage at which the reaction takes place, and the relative amounts of non equivalent surface sites, distinguished according to their nominal coordination. A satisfactory model accuracy is found only when discriminating data according to their provenance. On one hand, this result points at a qualitative agreement across reported experimental CO2 reduction reactions trends for single-crystal surfaces with well-defined terminations. On the other, this finding hints at the presence of differences in nominally identical catalysts and/or CO2 reduction reaction measurements, which result in quantitative disagreement between experiments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.