Abstract

Over the past two decades, virtual reality technology (VRT)-based rehabilitation has been increasingly examined and applied to assist patient recovery in the physical and cognitive domains. The advantages of the use of VRT in the neurorehabilitation field consist of the possibility of training an impaired function as a way to stimulate neuron reorganization (to maximize motor learning and neuroplasticity) and restoring and regaining functions and abilities by interacting with a safe and nonthreatening yet realistic virtual reality environment (VRE). Furthermore, VREs can be tailored to patient needs and provide personalized feedback on performance. VREs may also support cognitive training and increases patient motivation and enjoyment. Despite these potential advantages, there are inconclusive data about the usefulness of VRT in neurorehabilitation settings, and some issues on feasibility and safety remain to be ascertained for some neurological populations. The present brief overview aims to summarize the available literature on VRT applications in neurorehabilitation settings, along with discussing the pros and cons of VR and introducing the practical issues for research. The available studies on VRT for rehabilitation purposes over the past two decades have been mostly preliminary and feature small sample sizes. Furthermore, the studies dealing with VRT as an assessment method are more numerous than those harnessing VRT as a training method; however, the reviewed studies show the great potential of VRT in rehabilitation. A broad application of VRT is foreseeable in the near future due to the increasing availability of low-cost VR devices and the possibility of personalizing VR settings and the use of VR at home, thus actively contributing to reducing healthcare costs and improving rehabilitation outcomes.

Highlights

  • There is no unique definition of virtual reality (VR)

  • “the use of interactive simulations to provide users with opportunities to engage in environments that appear and feel similar to real-world objects and events” [1], “an advanced form of a human-computer interface that allows the user to interact with and become immersed in a computer-generated environment in a naturalistic fashion” [2], “a range of computing technologies that present artificially generated sensory information in a form that people perceive as similar to real-world objects or events” [3], or “the use of interactive simulations created with computer hardware and software to present users with opportunities to engage in environments that appear and feel similar to real-world objects and events” [4]

  • It is necessary to consider that VR has somewhat lower costs when compared with other advanced rehabilitation therapies, where it can be used independently by the patient and it is adaptable for at-home use if a telerehabilitation service is available, like that with a virtual reality rehabilitation system (VRRS; Khymeia, Italy) [20,21]

Read more

Summary

Introduction

There is no unique definition of virtual reality (VR). The concept’s depictions include “the use of interactive simulations to provide users with opportunities to engage in environments that appear and feel similar to real-world objects and events” [1], “an advanced form of a human-computer interface that allows the user to interact with and become immersed in a computer-generated environment in a naturalistic fashion” [2], “a range of computing technologies that present artificially generated sensory information in a form that people perceive as similar to real-world objects or events” [3], or “the use of interactive simulations created with computer hardware and software to present users with opportunities to engage in environments that appear and feel similar to real-world objects and events” [4]. VR needs to be distinguished from extended reality (XR), which includes augmented reality (an interactive experience of a real-world environment where the objects that reside in the real world are enhanced by computer-generated perceptual information, sometimes across multiple sensory modalities) and mixed reality (the merging of real and virtual worlds to produce new environments and visualizations, where physical and digital objects co-exist and interact in real-time) Another type of VR consists of text-based networked. It is necessary to consider that VR has somewhat lower costs when compared with other advanced rehabilitation therapies (e.g., robot-assisted therapies), where it can be used independently by the patient and it is adaptable for at-home use if a telerehabilitation service is available, like that with a virtual reality rehabilitation system (VRRS; Khymeia, Italy) [20,21] Despite these potential advantages, there are inconclusive data on the usefulness of VR in neurorehabilitation settings [18,22,23,24,25,26]. The present brief overview aims to summarize the available literature on VR applications in neurorehabilitation settings [19,27,28], including Parkinson’s disease (PD) [24,29], multiple sclerosis (MS) [30], strokes [18,31], and cognitive decline [32] while discussing the pros and cons of VR and introducing the practical issues for research

Research Strategy
Stroke
Parkinson’s Disease
Cognitive Decline
Multiple Sclerosis
Potential Advantages and Side Effects of VR Rehabilitation
Findings
Issues for Research
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call