Abstract
In manufacturing processes, controlling system responses with uncertain system inputs, e.g., due to variations in material parameters of critical system sub-components, is a crucial task for performing reliable quality control and verification & validation (V&V) of system design. As a model for a manufacturing process, we consider the production of drums, that is, thin elastic membranes, whose properties are modeled via Dirichlet Laplacian eigenproblems with uncertain diffusion coefficients. Both a quality control and V&V problem are formulated within a data-consistent framework utilizing push-forward and pullback measures. In both problems, the uncertain diffusion coefficients are parameterized for every instance and the corresponding eigen-information defines correlated data streams. Subsequently, the quantities of interest required in the solution to the data-consistent inverse problems are determined by an a posteriori analysis of these data streams using feature extraction techniques. While the methodology proposed here is quite general, the specific efficacy of the proposed methodology is comprehensively explored in the numerical results for both the quality control and V&V problems associated with the manufacturing of drums.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.