Abstract

We used the framework of the uncontrolled manifold (UCM) hypothesis to explore changes in the structure of variability in multifinger force-production tasks when a secondary task was introduced. Healthy young subjects produced several levels of the total force by pressing with the four fingers of the hand on force sensors. The frame with the sensors rested on the table (Stable condition) or on a narrow supporting beam (Unstable conditions) that could be placed between different finger pairs. Most variance in the finger mode space was compatible with a fixed value of the total force across all conditions, whereas the patterns of sharing of the total force among the fingers were condition dependent. Moment of force was stabilized only in the Unstable conditions. The finger mode data were projected onto the UCM computed for the total force and subjected to principal component (PC) analysis. Two PCs accounted for >90% of the variance. The directions of the PC vectors varied across subjects in the Stable condition, whereas two "default" PCs were observed under the Unstable conditions. These observations show that different persons coordinate their fingers differently in force-production tasks. They converge on similar solutions when an additional constraint is introduced. The use of variable solutions allows avoiding a loss in accuracy of performance when the same elements get involved in another task. Our results suggest a mechanism underlying the principle of superposition suggested in a variety of human and robotic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.