Abstract

Recent studies combining high-density surface electromyography (HD-sEMG) and ultrasound imaging have yielded valuable insights into the relationship between motor unit activity and muscle contractile properties. However, limited evidence exists on the relationship between motor unit firing properties and tendon morpho-mechanical properties. This study aimed to determine the relationship between triceps surae motor unit firing properties and the morpho-mechanical properties of the Achilles tendon (AT). Motor unit firing properties (i.e. mean discharge rate (DR) and coefficient of variation of the interspike interval (COVisi)) and motor unit firing-torque relationships (cross-correlation between cumulative spike train (CST) and torque, and the delay between motor unit firing and torque production (neuromechanical delay)) of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (SO) muscles were assessed using HD-sEMG during isometric plantarflexion contractions at 10% and 40% of maximal voluntary contraction (MVC). The morpho-mechanical properties of the AT (i.e. length, thickness, cross-sectional area and resting stiffness) were determined using B-mode ultrasonography and shear-wave elastography. Multiple linear regression analysis showed that at 10% MVC, the DR of the triceps surae muscles explained 41.7% of the variance in resting AT stiffness. Additionally, at 10% MVC, COVisi SO predicted 30.4% of the variance in AT length. At 40% MVC, COVisi MG and COVisi SO explained 48.7% of the variance in AT length. Motor unit-torque relationships were not associated with any morpho-mechanical parameter. This study provides novel evidence of a contraction-intensity dependent relationship between motor unit firing parameters of the triceps surae muscle and the morpho-mechanical properties of the AT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.