Abstract
In our study 10% of bovine serum albumin was added to the physiological incubation medium to mimic the oncotic pressure of the cellular cytoplasm and to test for its effect on the respiration of isolated rat heart mitochondria, saponin- or saponin plus crude collagenase (type IV)-treated heart muscle fibers and saponin-treated rat quadriceps muscle fibers. Pyruvate and malate were used as substrates. We found that albumin slightly decreased the maximal ADP-stimulated respiration rate only for saponin-treated heart muscle fibers. The apparent K m ADP of oxidative phosphorylation increased significantly, by 70–100%, for isolated heart mitochondria, saponin plus collagenase-treated heart muscle fibers and for saponin-treated quadriceps muscle fibers but remained unchanged for saponin-treated heart muscle fibers. The saponin-treated heart muscle fibers were characterized by a very high control apparent K m ADP value (234±24 μM ADP) compared with other preparations (14–28 μM ADP). The results suggest that in vivo the oncotic pressure is not the relevant factor causing the low outer mitochondrial membrane permeability for ADP in cardiomyocytes, in contrast to quadriceps muscle cells. It is likely that the outer mitochondrial membrane-bound protein(s) which is supposed to remain in saponin-treated heart muscle fibers is responsible for this property of the membrane.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have