Abstract

AbstractVariability of ice microphysical properties like crystal size and density in cirrus clouds is important for climate through its impact on radiative forcing, but challenging to represent in models. For the first time, recent laboratory experiments of particle growth (tied to crystal morphology via deposition density) are combined with a state‐of‐the‐art Lagrangian particle‐based microphysics model in large‐eddy simulations to examine sources of microphysical variability in cirrus. Simulated particle size distributions compare well against balloon‐borne observations. Overall, microphysical variability is dominated by variability in the particles' thermodynamic histories. However, diversity in crystal morphology notably increases spatial variability of mean particle size and density, especially at mid‐levels in the cloud. Little correlation between instantaneous crystal properties and supersaturation occurs even though the modeled particle morphology is directly tied to supersaturation based on laboratory measurements. Thus, the individual thermodynamic paths of each particle, not the instantaneous conditions, control the evolution of particle properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.