Abstract

Vibrationally excited O2, OH, and HO2 species have been suggested (J. Phys. Chem. A 2004, 108, 758) to provide clues for explaining the "ozone deficit problem" and "HOx dilemma" in the middle atmosphere under conditions of local thermodynamic disequilibrium (LTD), but the question arises of how much LTD will affect the title ozone sink reactions. Besides providing novel kinetic results, it is shown that LTD tends to disfavor ozone depletion relative to traditional atmospheric modeling under Boltzmann equilibration, which is partly due to competition between the various reactive channels. The calculations also suggest that the title LTD processes can be important sources of highly vibrationally excited O2 in the middle atmosphere. Moreover, LTD is shown to offer an explanation for the fact that some down revision of the O + HO2 rate constant, or the ratio of the O + HO2 to O + OH rate constants, is required to improve agreement between the predictions of traditional modeling and observation. This, in turn, provides significant evidence supporting LTD at such altitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.