Abstract

[1] Total removal rate constants of OH(υ = 9) by O atoms, O2, O3, N2, and CO2 were measured at room temperature. Ozone photodissociation at 248 nm in a mixture containing H2 generates O atoms and OH(υ = 9) by the secondary reaction of H atoms with excess O3. Steady state OH(υ = 9) population measurements using laser-induced fluorescence (LIF) determine the relative rate constants for OH(υ = 9) removal by other species present in the gas mixture. Using available measurements of the absolute removal rate constants by O3 and CO2, we extract a value of (4 ± 1) × 10−10 cm3s−1 (2σ) for the OH(υ = 9) + O rate constant. Collisional removal by O2 and N2 is approximately 20 and 600 times slower, respectively. The result for OH(υ = 9) + O indicates that fast O-atom processes play an important role in determining the OH emission and chemical heating rates in the middle terrestrial atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.