Abstract
BackgroundThis systematic review will address the need for a better understanding of the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity in freshwater temperate environments. As the number of dams continues to increase worldwide, so too has concerns for their effects on fish populations. Fish injury and mortality at hydroelectric facilities may have serious consequences for fish populations, which are generally the result of three main sources: (1) fish passage through hydroelectric facilities (i.e., turbines, spillways, sluiceways, and other passage routes) during downstream migration for migratory fish; (2) the entrainment of resident fish; and (3) the impingement of fish (migratory or resident) against screens/trash racks. Most studies on the impacts of entrainment and impingement at hydroelectric facilities on fish have primarily focused on: (1) how fish injury and mortality occurs; and (2) evaluations of the effectiveness of various management strategies used to mitigate harm during downstream passage. Given the contributions of migratory and resident adults and juveniles to fish production, a necessary extension is to evaluate the impacts of fish injury and mortality from hydropower dam entrainment and impingement on fish productivity. Therefore, to ensure the sustainability of fishes dependent on our freshwater ecosystems, a better understanding of the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity is needed.MethodsThis systematic review will search for, compile, summarize and synthesize evidence on the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity in freshwater temperate environments. Considered studies will include (but not be limited to): (1) those that report a metric related to mortality and injury as an indication of the effect on fish productivity; (2) the change in a metric related to mortality and injury relative to an appropriate control; and (3) articles that scale-up the evaluation to include some estimate of a change in a component of fish productivity (e.g., articles that include an estimate of fish loss from the population due to entrainment/impingement by comparing a metric related to mortality or injury to an estimate of population size or biomass). Only studies where the causal relationship between intervention and outcome is made clear to allow for the effects of entrainment and impingement to be isolated from other potential impacts of hydroelectric power production (e.g., barriers to migration and/or habitat degradation), will be included. The review will use public search engines and specialist websites, and will include both primary and grey literature. Potential effect modifiers will be identified to obtain a better understanding of the factors that are associated with variation in effects among studies, given differences in: (1) site-specific factors (e.g., turbine type, size, power output); (2) methodologies and study designs used to assess impacts; and (3) biological factors (e.g., fish life history stage, body size and morphology). Study quality will be assessed to allow for critical evaluation, including study design, confounding factors and statistical analysis. Data will be compiled into a narrative synthesis and a meta-analysis will be conducted where data availability and quality allow.
Highlights
This systematic review will address the need for a better understanding of the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity in freshwater temperate environments
Dams can act as a barrier to migratory and resident fish, fragmenting rivers and degrading habitats
Given the contributions of migratory and resident adults and juveniles to fish production, a natural extension would be evaluating the impacts of fish injury and mortality from hydropower dam entrainment and impingement on fish productivity
Summary
Searches Search terms A list of relevant search terms was generated by the Advisory Team, and divided into three components: the population (subject and environment type), intervention and outcome, and will be combined using Boolean operators “AND” and/or “OR” (Table 1). The information for each article retrieved using the search strategy will be uniquely coded based on the criteria (generally categorised as “low risk”, “high risk”, or “unclear risk”) to help assess the quality of each article, and to provide insight into any potential risk of bias present in each of the studies This information will be instrumental in helping to determine reliability of the evidence base available for potentially conducting a meta-analysis on the impacts of turbine and spillway mortality on fish productivity. Data extraction strategy Meta-data will be extracted from the included studies by the Review Team and will be recorded in a MS-Excel database that will be made available with the published systematic review article, as additional supporting files.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have