Abstract

Wheat spike detection is crucial for estimating wheat yields and has a significant impact on the modernization of wheat cultivation and the advancement of precision agriculture. This study explores the application of the DETR (Detection Transformer) architecture in wheat spike detection, introducing a new perspective to this task. We propose a high-precision end-to-end network named WH-DETR, which is based on an enhanced RT-DETR architecture. Initially, we employ data augmentation techniques such as image rotation, scaling, and random occlusion on the GWHD2021 dataset to improve the model’s generalization across various scenarios. A lightweight feature pyramid, GS-BiFPN, is implemented in the network’s neck section to effectively extract the multi-scale features of wheat spikes in complex environments, such as those with occlusions, overlaps, and extreme lighting conditions. Additionally, the introduction of GSConv enhances the network precision while reducing the computational costs, thereby controlling the detection speed. Furthermore, the EIoU metric is integrated into the loss function, refined to better focus on partially occluded or overlapping spikes. The testing results on the dataset demonstrate that this method achieves an Average Precision (AP) of 95.7%, surpassing current state-of-the-art object detection methods in both precision and speed. These findings confirm that our approach more closely meets the practical requirements for wheat spike detection compared to existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.