Abstract
The phenotypic analysis of wheat spikes plays an important role in wheat growth management, plant breeding, and yield estimation. However, the dense and tight arrangement of spikelets and grains on the spikes makes the phenotyping more challenging. This study proposed a rapid and accurate image-based method for in-field wheat spike phenotyping consisting of three steps: wheat spikelet segmentation, grain number classification, and total grain number counting. Wheat samples ranging from the early filling period to the mature period were involved in the study, including three varieties: Zhengmai 618, Yannong 19, and Sumai 8. In the first step, the in-field collected images of wheat spikes were optimized by perspective transformation, augmentation, and size reduction. The YOLOv8-seg instance segmentation model was used to segment spikelets from wheat spike images. In the second step, the number of grains in each spikelet was classified by a machine learning model like the Support Vector Machine (SVM) model, utilizing 52 image features extracted for each spikelet, involving shape, color, and texture features as the input. Finally, the total number of grains on each wheat spike was counted by adding the number of grains in the corresponding spikelets. The results showed that the YOLOv8-seg model achieved excellent segmentation performance, with an average precision (AP) @[0.50:0.95] and accuracy (A) of 0.858 and 100%. Meanwhile, the SVM model had good classification performance for the number of grains in spikelets, and the accuracy, precision, recall, and F1 score reached 0.855, 0.860, 0.865, and 0.863, respectively. Mean absolute error (MAE) and mean absolute percentage error (MAPE) were as low as 1.04 and 5% when counting the total number of grains in the frontal view wheat spike images. The proposed method meets the practical application requirements of obtaining trait parameters of wheat spikes and contributes to intelligent and non-destructive spike phenotyping.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.