Abstract
Superhydrophobicity plays a pivotal role in numerous applications. Recently, we have demonstrated the potential of auxetic metamaterials in creating superhydrophobic materials with unique wetting properties. However, the superhydrophobic properties are lost when the liquid penetrates into the surface structure. Understanding the conditions for droplet penetration is crucial for advancing wetting control. Here, we experimentally identify the transition from droplet suspension to full-penetration on an auxetic bowtie/honeycomb lattice membrane. We develop a comprehensive physical model surface representing different states of strain, ranging from auxetic to conventional lattice membranes, and consider the wetting as the liquid surface tension is varied using water/ethanol mixtures. By examining the interplay between contact angle and lattice structure, we gain valuable insights into the conditions for droplet suspension and full-penetration. Additionally, we develop a simple touch test to discern whether a droplet has effectively fully penetrated the structure, providing a practical and efficient means of distinguishing the different wetting states (suspended or partially penetrating vs fully penetrating).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.