Abstract

Within the Ginzburg-Landau theory, which is quantitatively correct for classical superconductors, it is shown that a type-I superconductor can display an interface delocalization or “wetting” transition, in which a macroscopically thick superconducting layer intrudes from the surface into the bulk normal phase. The condition for this transition to occur is that the superconducting order parameter | ψ| 2 is enhanced at the surface. This corresponds to a negative surface extrapolation length b. The wetting transition takes place at bulk two-phase coexistence of normal and superconducting phases, at a temperature T D below the critical temperature T c, and at magnetic field H D = H c( T D). The field is applied parallel to the surface. Surprisingly, the order of the wetting transition is controlled by a bulk material constant, the Ginzburg-Landau parameter κ. This is very unusual, since in other systems (fluids, Ising magnets,…) the order of the wetting transition depends on surface parameters that are difficult to determine or control. For superconductors, first-order wetting is predicted for 0 ≤ κ < 0.374, and critical wetting for 0.374 < κ < 1/√2. In the case of first-order wetting, the prewetting extension is also found. Unlike in standard wetting problems, the prewetting line does not terminate at a critical point but changes from first to second order at a tricritical point. Twinning-plane superconductivity (TPS) is reinterpreted as a prewetting phenomenon. The possibility of critical wetting in superconductors is especially interesting because this phenomenon has largely eluded experimental verification in any system until now. Furthermore, superconductors provide a realization of wetting in systems with short-range (exponentially decaying) interactions. This is very different from the usual long-range (algebraically decaying) interactions, such as van der Waals forces, and has important consequences for the wetting characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.