Abstract

When a multi-component fluid contacts arigid solid substrate, the van der Waals interaction between fluids and substrate induces a depletion/adsorption layer depending on the intrinsic wettability of the system. In this study, we investigate the depletion/adsorption behaviors of A-B fluid system. We derive analytical expressions for the equilibrium layer thickness and the equilibrium composition distribution near the solid wall, based on the theories of de Gennes and Cahn. Our derivation is verified through phase-field simulations, wherein the substrate wettability, A-B interfacial tension, and temperature are systematically varied. Our findings underscore two pivotal mechanisms governing the equilibrium layer thickness. With an increase in the wall free energy, the substrate wettability dominates the layer formation, aligning with de Gennes' theory. When the interfacial tension increases, or temperature rises, the layer formation is determined by the A-B interactions, obeying Cahn's theory. Additionally, we extend our study to non-equilibrium systems where the initial composition deviates from the binodal line. Notably, macroscopic depletion/adsorption layers form on the substrate, which are significantly thicker than the equilibrium microscopic layers. This macroscopic layer formation is attributed to the interplay of phase separation and Ostwald ripening. We anticipate that the present finding could deepen our knowledge on the depletion/adsorption behaviors of immiscible fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.