Abstract

Here, we demonstrate that high magnetic fields alter the wettability of water and ionic solutions on the single-crystal α-Al2O3. We investigated the relationship between the substrate crystal orientation, material magnetism, liquid conductivity, and the surface contact angle. Applying high magnetic fields decreased the water contact angles on all of the surface orientations studied, and the reduction was larger for more magnetic substrates. For ionic solutions, high magnetic fields increased the contact angle on the (0001) α-Al2O3 surface but decreased the contact angles on the (112̅0), (101̅0), and (011̅2) surfaces. We attribute these orientation-dependent ionic solution responses to competition between the field-induced sample magnetization energy and the Lorentz force acting on the ionic solution. Overall, this work provides new magnetic-field-based strategies for changing the wettability and provides guidelines for fabricating novel microfluidic systems or biointerfaces with in situ magnetic control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.