Abstract

The distribution and solidified structure of alloying elements are important for the quality and the properties of alloys. In the present study, the solidification behavior of aluminum-rich alloys is studied under various high magnetic field conditions, and the influences of uniform and gradient magnetic fields with different intensity and direction on the distribution and the morphology of solute elements of Al-Cu and Al-Mg alloys are investigated. It is found that because of the differences of the electromagnetic force (Lorentz and magnetization forces) acting on Cu element and Mg element with different physical properties in the matrix, the regularities of distribution for Cu element and Mg element are opposite just in the intracrystalline and intergranular under high uniform magnetic field condition, and not only the content but the distributions of Cu and Mg elements are obviously different under high gradient magnetic field conditions as well. It can be concluded that high magnetic field has different effect on the solute distribution in alloys with different physical properties such as density, susceptibility, conductivity, etc. And the experimental results indicate that it is possible to control the terminal solubility and morphology of the solute elements in alloys by high magnetic fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call