Abstract
Summary Wettability controls the fluid-phase distribution and flow properties in the reservoir. The ionic compositions of brine, the oil chemistry, and the reservoir-rock mineralogy have profound effects on wettability. Wettability measurement can be obtained from special core analysis (SCAL), but those data are not readily available, and the cost and time of analyzing different possible injection waters can be excessive. There is thus a need for early evaluation of wettability because it is crucial for selecting optimal field-development options. Information about wettability can be indirectly obtained from logging of other rock properties, but the uncertainty in the estimated wettability range is often high. In addition, wettability alteration by injection brines cannot be analyzed by logging. This study seeks to estimate the wettability by assessing the electrostatic interactions existing between the mineral/brine and the oil/brine interfaces using a surface-complexation model (SCM) supported with relatively simple and fast flotation experiments. The SCM is a chemical equilibrium technique of characterizing surface adsorption phenomenon. The SCM provides a cost-effective technique of characterizing the wettability of minerals at reservoir conditions. Ionic composition of the brine and the properties of the minerals were used as input to the model. In addition, the polar oil components in the crude oil were converted into their equivalent organic acid and base concentrations to be incorporated into the model. The electric-double-layer model that was used in the SCM was the diffuse-layer model. The SCM simulation is a fast and inexpensive wettability-characterization tool if reservoir cores and crude oil required in conventional wettability measurements are not readily available. From the flotation and SCM results, it could be concluded that the latter could capture the oil-adhesion tendencies of the former. Not only does the SCM predict the wetting tendencies of the minerals, but also it has the capacity to evaluate the mechanisms that led to their wetting preferences. For instance, the SCM results reveal that for negatively charged mineral/brine and oil/brine interfaces, divalent cations such as Ca2+ and Mg2+ can serve as a bridge between the two interfaces, thereby leading to oil adhesion. On the other hand, for positively charged mineral/brine interfaces such as calcite, direct adsorption of the carboxylic oil component was the dominant mechanism for oil adhesion. The SCM technique of characterizing wettability can be used to screen possible injection-water compositions to assess their potential to alter the wettability to more water-wet. Finally, the SCM technique could capture the trend of ζ-potential measurements from literature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have