Abstract

Unlike conventional oil production methods, enhanced oil recovery (EOR) processes can recover most oil products from the reservoir. One method, known as wettability alteration, changes the hydrophilicity of the reservoir rock via decreased surface interactions with crude oils. The mitigation of these attractive forces enhances petroleum extraction and increases the accessibility of previously inaccessible rock deposits. In this work, silica nanoparticles (NPs) have been used to alter the wettability of two sandstone surfaces, Berea and Boise. Changes in wettability were assessed by measuring the contact angle and interfacial tension of different systems. The silica NPs were suspended in brine and a combined solution of brine and the Tween®20 nonionic surfactant at concentrations of 0, 0.001, and 0.01 wt% NP with both light and heavy crude oil. The stability of the different nanofluids was characterized by the size, zeta potential, and sedimentation of the particles in suspension. Unlike the NPs, the surfactant had a greater effect on the interfacial tension by influencing the liquid-liquid interactions. The introduction of the surfactant decreased the interfacial tension by 57 and 43% for light and heavy crude oil samples, respectively. Imaging and measurements of the contact angle were used to assess the surface-liquid interactions and to characterize the wettability of the different systems. The images reflect that the contact angle increased with the addition of NPs for both sandstone and oil types. The contact angle in the light crude oil sample was most affected by the addition of 0.001 wt% NP, which altered both sandstones’ wettability. Increases in contact angle approached 101.6% between 0 and 0.001 wt% NPs with light oil on the Berea sandstone. The contact angle however remained relatively unaffected by addition of higher NP concentrations, thus indicating that low NP concentrations can effectively be used for enhancing crude oil recovery. While the contact angle of the light crude oil plateaued, the heavy crude oil continued to increase with an increase in NP concentration; therefore indicating that a maximum contact angle in heavy crude oil was not yet achieved. The introduction of NPs in light and heavy crude oil samples altered both the Berea and Boise sandstone systems’ wettability, which in turn indicated the efficacy of the silica NPs and surfactants in generating a more water-wet reservoir. Consequently, silica NPs and surfactants are most promising for EOR across the range of oil types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call