Abstract
There is a growing interest in the development of active, durable, and cost-effective electrocatalysts for oxygen evolution reactions (OER). In this study, we synthesized a self-reconstruction iron-doped sulfide-regulated nickel molybdate catalyst using wet chemical sulfuration and electrodeposition techniques. The core-shell nanorods (SC@NMO) were produced through rapid sulfuration. We investigated the effects of sulfur leaching on rapid and extensive electrochemical self-reconstruction. Our approach utilized the phase change of Fe3+ and electrodeposition-induced restructuring to enhance the catalyst's OER activity and stability in an alkaline electrolyte. Notably, iron ions establish a precipitation-dissolution dynamic equilibrium at the interface between the catalyst surface and the electrolyte, which minimizes iron loss and results in a more efficient and stable catalyst. The prepared sample, SC-Fe(Ni)OOH@NMO, demonstrated exceptional oxygen evolution performance and long-term stability in a 1 M KOH solution, achieving an overpotential of only 279 mV at a current density of 100 mA cm−2. It maintained stable operation for 200 h in a high-concentration 6 M KOH solution. The above data prove that this work provides a feasible strategy to enhance the OER catalytic capacity of metal oxides by the two modification methods of co-doping of metal and non-metal and reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.