Abstract

Nowadays, sewage sludge management represents one of the most important issues in wastewater treatment. Within the European project "ROUTES," wet oxidation (WO) was proposed for sludge minimization. Four different types of sludge were treated in an industrial WO plant: (1) municipal primary sludge (chemical oxygen demand COD: 73.0 g/L; volatile suspended solid VSS: 44.1 g/L); (2) secondary sludge from an industrial wastewater treatment plant (WWTP) without primary sedimentation (COD: 71.8 g/L; VSS: 34.2 g/L); (3) secondary sludge from a mixed municipal and industrial WWTP without primary sedimentation (COD: 61.9 g/L; VSS: 38.7 g/L); and (4) mixed primary (70%) and secondary (30%) municipal sludge (COD: 81.2 g/L; VSS: 40.6 g/L). The effect of process parameters (temperature, reaction time, oxygen dosage) on WO performance was investigated. Depending on operating conditions, VSS and COD removal efficiency varied in the range 80-97% and 43-71%, respectively. A correlation between process efficiency and the initial VSS/TSS (total suspended solids) ratio was highlighted. Furthermore, a mathematical model of WO process for simulating VSS and COD profiles was developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call