Abstract

Abstract Two wet deposition monitoring networks, the Coleson Cove Precipitation Monitoring Network (CCPMN) (12 stations) located in the Coleson Cove-Saint John area of south New Brunswick, and the Expanded New Brunswick Precipitation Monitoring Network (ENBPMN) (6 stations) covering the remainder of the province, were established in May 1988. The monitoring networks and a complementary modelling study were implemented to assess the relative contributions of local and distant sources to wet deposition in New Brunswick. Quality assurance/quality control activities for the networks included independent external audits, collocated samplers at one site and comparisons of weekly measurements at the ENBPMN sampler and the Canadian Air and Precipitation Monitoring Network (CAPMoN) sampler which makes daily measurements. The intercomparisons provided reassurance that the networks provided high quality data. Analysis of 2 years (June 1988–May 1990) data from the networks included routine statistical analyses for acid rain chemistry as well as analysis of 1 year of daily back trajectory data from Harcourt, New Brunswick. Three-day back trajectories determined at 12-h intervals from Harcourt on days with precipitatio showed that air masses originate mainly from regions in Quebec, Ontario and northeast U.S.A. which are known to have high sulphur oxide emissions. Some 18 trajectories were associated with 50% of the wet sulphate deposition and over 200 trajectories with 75% of the deposition in the 1-year period ending 31 May 1989. The MESOPUFF model, applied to an 800 km by 800 km domain that included the entire province of New Brunswick, was used to make predictions of wet sulphate and nitrate deposition at each of the wet deposition monitoring stations for a 2-year period, 1 June 1988-31 May 1990. Model predictions averaged over all receptors due to all sources in the model domain accounted for 7–25% of the measured seasonal average wet sulphate deposition and less than 3% of the measured wet nitrate deposition at all monitoring stations. Wet deposition in New Brunswick is thus dominated by distant sources through long-range transport. The model estimated that the oil-fired Coleson Cove thermal generating station contributed between 7% and 16% to the seasonal wet sulphur deposition and less than 3% of the seasonal wet nitrogen deposition at monitoring stations in the Coleson Cove-Saint John area. The estimates for wet nitrogen deposition are limited by the NO χ emissions information which is considered less reliable than SO 2 emissions information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call