Abstract
Flavivirus capsid (C) protein is a key structural component of virus particles. The non-structural role of C protein in the pathogenesis of arthropod-borne flaviviruses is not clearly deciphered. This study showed that West Nile virus (WNV) and dengue virus (DENV) utilized C protein to reduce human Sec3p (hSec3p) levels at post-transcriptional level through activation of chymotrypsin-like proteolytic function of 20S proteasome. Mutagenesis studies confirmed amino acids 14, 109-114 of WNV C protein and 13, 102-107 of DENV C protein played an important role in activating the proteolytic function of 20S proteasome. Amino acid residues at 14 (WNV) and 13 (DENV) of C protein were important for C protein-hSec3p binding and physical interaction between C protein and hSec3p was essential to execute hSec3p degradation. Degradation motif required to degrade hSec3p resided between amino acid residues 109-114 of WNV C protein and 102-107 of DENV C protein. Proteasomes, hSec3p binding motif and degradation motif on C protein must be intact for efficient flavivirus production. Clinical isolates of DENV showed more pronounced effect in manipulating the proteasomes and reducing hSec3p levels. This study portrayed the non-structural function of C protein that helped the flavivirus to nullify the antiviral activity of hSec3p by accelerating its degradation and facilitating efficient binding of elongation factor 1α with flaviviral RNA genome.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have