Abstract

In this paper, well-posedness of a general class of elliptic mixed hemivariational–variational inequalities is studied. This general class includes several classes of the previously studied elliptic mixed hemivariational–variational inequalities as special cases. Moreover, our approach of the well-posedness analysis is easily accessible, unlike those in the published papers on elliptic mixed hemivariational–variational inequalities so far. First, prior theoretical results are recalled for a class of elliptic mixed hemivariational–variational inequalities featured by the presence of a potential operator. Then the well-posedness results are extended through a Banach fixed-point argument to the same class of inequalities without the potential operator assumption. The well-posedness results are further extended to a more general class of elliptic mixed hemivariational–variational inequalities through another application of the Banach fixed-point argument. The theoretical results are illustrated in the study of a contact problem. For comparison, the contact problem is studied both as an elliptic mixed hemivariational–variational inequality and as an elliptic variational–hemivariational inequality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.