Abstract
In this paper, an alternative approach is provided in the well-posedness analysis of elliptic variational–hemivariational inequalities in real Hilbert spaces. This includes the unique solvability and continuous dependence of the solution on the data. In most of the existing literature on elliptic variational–hemivariational inequalities, well-posedness results are obtained by using arguments of surjectivity for pseudomonotone multivalued operators, combined with additional compactness and pseudomonotonicity properties. In contrast, following (Han in Nonlinear Anal B Real World Appl 54:103114, 2020; Han in Numer Funct Anal Optim 42:371–395, 2021), the approach adopted in this paper is based on the fixed point structure of the problems, combined with minimization principles for elliptic variational–hemivariational inequalities. Consequently, only elementary results of functional analysis are needed in the approach, which makes the theory of elliptic variational–hemivariational inequalities more accessible to applied mathematicians and engineers. The theoretical results are illustrated on a representative example from contact mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.