Abstract

We study the generalized Hartree equation, which is a nonlinear Schrödinger-type equation with a nonlocal potential [Formula: see text]. We establish the local well-posedness at the nonconserved critical regularity [Formula: see text] for [Formula: see text], which also includes the energy-supercritical regime [Formula: see text] (thus, complementing the work in [A. K. Arora and S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, Michigan Math J., forthcoming], where we obtained the [Formula: see text] well-posedness in the intercritical regime together with classification of solutions under the mass–energy threshold). We next extend the local theory to global: for small data we obtain global in time existence and for initial data with positive energy and certain size of variance we show the finite time blow-up (blow-up criterion). In the intercritical setting the criterion produces blow-up solutions with the initial values above the mass–energy threshold. We conclude with examples showing currently known thresholds for global vs. finite time behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call