Abstract
In this article, the well-posedness of several common nonlocal models for higher-order refined shear deformation beams is studied. Unlike the case of classic beams models, both strain-driven and stress-driven purely nonlocal theories lead to an ill-posed issue (i.e., there are excessive mandatory boundary conditions) when considering higher-order shear deformation assumption. As an effective remedy, the well-posedness of strain-driven and stress-driven two-phase nonlocal (StrainDTPN and StressDTPN) models is pertinently evidenced by studying the free vibration problem of nanobeams. The governing equations of motion and standard boundary conditions are derived from Hamilton’s principle. The integral constitutive relation is transformed equivalently to a differential form equipped with two constitutive boundary conditions. Using the generalized differential quadrature method (GDQM), the governing equations in terms of displacements are solved numerically. Numerical results show that both the StrainDTPN and StressDTPN models can predict consistent size-effects of beams with different boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.