Abstract
The synthesis, reactivity, and potential of well-defined dinuclear gold complexes as precursors for dual gold catalysis are explored. Using the preorganizing abilities of the ditopic PN(H) P(iPr) (L(H) ) ligand, dinuclear Au(I) -Au(I) complex 1 and mixed-valent Au(I) -Au(III) complex 2 provide access to structurally characterized chlorido-bridged cationic species 3 and 4 upon halide abstraction. For 2, this transformation involves unprecedented two-electron oxidation of the redox-active ligand, generating a highly rigidified environment for the Au2 core. Facile reaction with phenylacetylene affords the σ,π-activated phenylacetylide complex 5. When applied in the dual gold heterocycloaddition of a urea-functionalized alkyne, well-defined precatalyst 3 provides high regioselectivities for the anti-Markovnikov product, even at low catalyst loadings, and outperforms common mononuclear Au(I) systems. This proof-of-concept demonstrates the benefit of preorganization of two gold centers to enforce selective non-classical σ,π-activation with bifunctional substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.