Abstract

AbstractThe synthesis, reactivity, and potential of well‐defined dinuclear gold complexes as precursors for dual gold catalysis are explored. Using the preorganizing abilities of the ditopic PNHPiPr (LH) ligand, dinuclear AuI–AuI complex 1 and mixed‐valent AuI–AuIII complex 2 provide access to structurally characterized chlorido‐bridged cationic species 3 and 4 upon halide abstraction. For 2, this transformation involves unprecedented two‐electron oxidation of the redox‐active ligand, generating a highly rigidified environment for the Au2 core. Facile reaction with phenylacetylene affords the σ,π‐activated phenylacetylide complex 5. When applied in the dual gold heterocycloaddition of a urea‐functionalized alkyne, well‐defined precatalyst 3 provides high regioselectivities for the anti‐Markovnikov product, even at low catalyst loadings, and outperforms common mononuclear AuI systems. This proof‐of‐concept demonstrates the benefit of preorganization of two gold centers to enforce selective non‐classical σ,π‐activation with bifunctional substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.