Abstract

Abstract The Mw 9.3 great Sumatra-Andaman earthquake of December 26, 2004 induced water level changes in Fairbanks, Alaska, at an epicentral distance of 10,800 km. Spike like water level changes followed by a step of water level rise were observed in at least four wells. We modeled the timing and magnitude of the water level rise using a combination of a linear trend and a step function. We calculated the misfit between the observed water level rises and our model by systematically shifting the timing of occurrence of step in water level. The minimum value of cumulative misfit suggested the timing of occurrence of steps. A previous study showed persistent water level rises in all these wells from the 2002 Denali fault earthquake and it’s major aftershocks. From those observations, we developed an empirical relationship between water level changes, epicentral distances and earthquake magnitude. This relationship attributed water level changes in the wells to ground shaking by seismic waves. The estimated average water level changes due to the Sumatra earthquake using that relationship was in agreement with the observed water level changes. Thus we concluded that ground shaking in Fairbanks, induced by surface waves from the Sumatra earthquake was sufficient to change water levels.

Highlights

  • Seismic waves from a distant earthquake can produce water level changes in groundwater wells

  • We developed an empirical relationship between water level changes, epicentral distances and earthquake magnitude

  • Since the magnitudes of the spikes were several times larger than the normal fluctuations of water level and they occurred around the time of first P and S wave arrival from Sumatra, we suspect that the spikes were induced by seismic waves

Read more

Summary

Introduction

Seismic waves from a distant earthquake can produce water level changes in groundwater wells. Spike like water level changes followed by a step of water level rise were observed in at least four wells. We modeled the timing and magnitude of the water level rise using a combination of a linear trend and a step function.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call