Abstract

To determine how climate-induced changes in hydrology and water level may affect the trophic state (productivity) of stratified lakes, two relatively pristine dimictic temperate lakes in Wisconsin, USA, were examined. Both are closed-basin lakes that experience changes in water level and degradation in water quality during periods of high water. One, a seepage lake with no inlets or outlets, has a small drainage basin and hydrology dominated by precipitation and groundwater exchange causing small changes in water and phosphorus (P) loading, which resulted in small changes in water level, P concentrations, and productivity. The other, a terminal lake with inlets but no outlets, has a large drainage basin and hydrology dominated by runoff causing large changes in water and P loading, which resulted in large changes in water level, P concentrations, and productivity. Eutrophication models accurately predicted the effects of changes in hydrology, P loading, and water level on their trophic state. If climate changes, larger changes in hydrology and water levels than previously observed could occur. If this causes increased water and P loading, stratified (dimictic and monomictic) lakes are expected to experience higher water levels and become more eutrophic, especially those with large developed drainage basins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call