Abstract

A spatial sampling design determines where sample locations are placed in a study area so that population parameters can be estimated with relatively high precision. If the response variable has spatial trends, spatially balanced or well-spread designs give precise results for commonly used estimators. This article proposes a new method that draws well-spread samples over arbitrary auxiliary spaces and can be used for master sampling applications. All we require is a measure of the distance between population units. Numerical results show that the method generates well-spread samples and compares favorably with existing designs. We provide an example application using several auxiliary variables to estimate total aboveground biomass over a large study area in Eastern Amazonia, Brazil. Multipurpose surveys are also considered, where the totals of aboveground biomass, primary production, and clay content (3 responses) are estimated from a single well-spread sample over the auxiliary space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.